NIST Center for Neutron Research —

DAVE

IDL/DAVE Lunchtime Seminar

Combining Objects and Compound Widgets

Rob Dimeo
July 20, 2004

Limitations of Conventional Compound Widgets......ccccvviiiiiiiiiiiiinnnnnnnnn.. 2
Requirements and common practices for conventional compound widgets...... 3
The interface for a compound widget objectcccciiiiiiiiiiiiiiiiiiiiiiiia. 4
RMD_DICE: A compound object widget replacement for CW_DICE 4
Using RMD_DICE in a sample program......ccceeeeeiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeenns 7
Chuck-a-Luck STMULAtOr ..o et eeerree e e eeenaes 9
SOUICE €ode LiStiNg .uuuueueiiiiiiiiiiiit e teeteeteeeeeetieeeeaaannnnnaeenanaaaees 12

NIST Center for Neutron Research —

DAVE

IDL/DAVE Lunchtime Seminar
The following excerpt is from the on-line help for IDL:

A compound widget is a complete, self-contained, reusable widget sub-tree
that behaves to a large degree just like a widget primitive, but which is
written in the IDL language. Compound widgets allow the development of
reusable widget code, much like a GUI subroutine.

Widget Values of Compound Widgets

Many compound widgets have associated values. Initial values can often be
specified using the VALUE keyword to the creation routine. Note, however,
that in some cases widget values of compound widgets cannot be set until
after the widget is realized; values are thus set, obtained, or changed using
the GET_VALUE and SET_VALUE keywords to the WIDGET_CONTROL procedure.
See the documentation for the individual compound widget creation routines
in the IDL Reference Guide for more detailed information.

Limitations of Conventional Compound Widgets

Often compound widgets (cw) are written in a manner similar to those in the
IDL distribution such as CW_BGROUP, CW_FIELD, etc. We will refer to this
style as conventional. Conventional compound widgets do not use objects in
their implementation. As stated above, users can extract and modify the
widget values from conventional compound widgets using the GET_VALUE and
SET_VALUE keywords to WIDGET_CONTROL. However there is no
straightforward and general method to modify the appearance of a compound
widget after it has been realized. Often the user of a cw (i.e. developer of
code that uses a cw) would like to be able to change the appearance of some
aspect of it such as the text in a title portion of the CW.

In order to circumvent this inherent limitation, it is possible to exploit the
properties of objects. A cw function interface can be written in such a way as
to wrap an object widget that it will be called in nearly the exact same manner
as a conventional cw but offers more flexibility and control than a conventional
cw. In order to understand how to exploit the capability of objects for this
purpose we need to review the requirements of a conventional cw.

Before continuing, it is assumed that most readers are comfortable with the
"standard” way of writing a conventional IDL widget program in which the state
information is passed around between event handlers using the UVALUE of the
top-level base (TLB).

NIST Center for Neutron Research —

DAVE

Requirements and common practices for conventional compound widgets

IDL/DAVE Lunchtime Seminar

-"state” information must be stored in location other than the UVALUE of the
top-level base of the cw. This is required since the UVALUE of the TLB must be
available to the user of the cw.

-"state” information is typically stored in the UVALUE of the first child of the
cw's top-level base. In the IDL distribution the first child of the top-level base
is called the stash. Storing the state in the stash as such makes retrieval in an
event handler easy requiring only a call such as the following:

stash = widget _info(event.top,/child)
wi dget _control, stash, get _uval ue = state

-There is no need to call XMANAGER in the code for the cw since the cw will be
managed by the XMANAGER called in the code of the cw's parent.

-Since there is no XMANAGER call in the CW, there can be no cleanup routine as
is usually recommended in a conventional widget program. Rather one has to
implement a KILL_NOTIFY procedure and associate it with the STASH.

-The event handler for the cw (i.e. the internal event handler) must be set for
the STASH.

-In order to allow the functionality of getting and setting the value of the cw,
it is necessary to set the keywords PRO_SET_VALUE and FUNC_GET_VALUE to
the names of the associated procedure and function in the call to
WIDGET_BASE that defines the cw's top-level base.

-The compound widget must be written as a function that returns the widget id
of the cw's top-level base.

-The compound widget should be written such that its functional interface
contains all of the usual fields (parameters and keywords) in a standard
primitive widget (e.g. WIDGET_BUTTON). Such fields include, but are not
limited to, the following:

PARENT (parameter)
EVENT_FUNC (keyword)
EVENT_PRO (keyword)
UNAME (keyword)
VALUE (keyword)
UVALUE (keyword)

NIST Center for Neutron Research —

DAVE

IDL/DAVE Lunchtime Seminar

The interface for a compound widget object

A conventional compound widget, such as CW_FIELD, is called from a parent
widget program as follows:

id= cwfield(tlb,title ="M wdget', value = 'M val ue')

Extracting the value of the cw is simply a matter of making the following
procedure call:

wi dget _control,id, get _value = cw_ text val

W The punchline to this entire method of writing cw's as objects is
&4:2;” that you can make the following call (to an imaginary compound
N widget object named CWO_FIELD):

id=cwo _field(tlb,title="M/ wi dget', value="M val ue', obj ref=0)

The call is nearly identical to that of CW_FIELD. However the last keyword in
this function call is the object reference to the underlying widget object. With
this object reference available to the programmer, it is possible to invoke any
of the underlying methods on the widget object. One example might be to
change the title of the widget (which is impossible with CW_FIELD). The way
you might change the title might be through an accessor method for the object
named set_property as follows:

ret = o->set _property(title = "New Title')

Let's take a detailed look at a concrete implementation of a compound widget
object.

RMD_DICE: A compound object widget replacement for CW_DICE

An example of a cw is provided in the IDL distribution and documentation
called CW_DICE.PRO and you can examine the code for the compound widget.

IDL> .edit cw dice

As you examine the code in CW_DICE you will notice that it suffers from a few
deficiencies. First and foremost the code uses common blocks to store the
faces of the die and the random number seed used when rolling the die. This
can lead to problems if you use more than one instance of the cw when
conflicts can arise between "common variables”. Of course it is not difficult to
rewrite this code with a minimal amount of effort to eliminate the COMMON

NIST Center for Neutron Research —

DAVE

block by simply storing these values in the STASH. However we wish to make
the code more flexible by implementing it as an object widget.

IDL/DAVE Lunchtime Seminar

In contrast to a procedural program an object posesses attributes and behavior.
The attributes are data members. Therefore it is simple to store the required
state information (widget or otherwise) for an object widget as an attribute.
Moreover the behavior of an object is defined by the object's methods. These
methods enable modification of the widget's appearance or any other property
of the widget, which leads us to the second deficiency in the conventional cw
program CW_DICE.

The second flaw in CW_DICE as written is that it is impossible to modify any
property of the die except the value after it has been realized in its parent
widget. For example, the keyword TUMBLE_CNT specifies the number of faces
you will see when you roll the die before it shows the final resulting face. This
can only be set upon creating the cw. By writing this as an object widget we
can extract the object reference (0) in the call to the function and then invoke
the accessor method SET_PROPERTY as follows:

ret = o->set_property(tunble_cnt = 5)

Therefore it should be clear that there are advantages in writing cw's as
objects. In order to understand how to write a cw as an object, let's take a
look at RMD_DICE, a drop-in replacement for CW_DICE.

RMD_DICE is composed of the following procedures and functions:

RMD_DICE
RMD_DICE__DEFINE
RMD_DICE::INIT
RMD_DICE::INIT_DIE_FACES
RMD_DICE::CONVERT_BMP
RMD_DICE::DICE_EVENT_HANDLER
RMD_DICE::ROLL
RMD_DICE::TOSS
RMD_DICE::GET_PROPERTY
RMD_DICE::SET_PROPERTY
RMD_DICE::CLEANUP
RMD_DICE_SET_VAL
RMD_DICE_GET_VAL
RMD_DICE_KILL_NOTIFY
RMD_DICE_EVENTS

LN A ——— —— — — p— p— p—
L L T T T s e e B e
N N N N N N N N N N N S N N N

A short description of the purpose of each of the procedures is listed below.

NIST Center for Neutron Research —

DAVE

IDL/DAVE Lunchtime Seminar

RMD_DICE (F)
Wrapper function for an instance of the object class RMD_DICE. This
provides the same interface to the object widget as the interface to
CW_DICE.

RMD_DICE__DEFINE (P)
Definition module for the class called RMD_DICE. The types for the data
needed in the object, the attributes, are defined here.

RMD_DICE::INIT (F)
Initialization module. This is one of two lifecycle methods in the class
definition. In this module the object data are initialized and the widgets
are defined.

RMD_DICE::INIT_DIE_FACES (F)
Loads bitmaps of the six die faces stored on disk.

RMD_DICE::CONVERT_BMP (F)
Converts the format of the bitmaps to one that IDL displays nicely and
resizes the images.

RMD_DICE::DICE_EVENT_HANDLER (F)
This is the event handler for the object. It returns an event structure to
the calling program (i.e. the parent widget) composed of ID, TOP,
HANDLER, VALUE, and OBJECT. It also starts a die roll by invoking the
method RMD_DICE::ROLL. This also calls the external event handler
(function or procedure) as specified by the user in the inital function call
to RMD_DICE:

e.g. id = rmd_dice(tlb,obj_ref = o,event_pro = 'ny_dice_event')

RMD_DICE_EVENTS (F)
Dispatches widget events to the proper method via
RMD_DICE::DICE_EVENT_HANDLER.

RMD_DICE::ROLL (F)
Displays a tumbling die and calls RMD_DICE::TOSS to obtain a random
result.

RMD_DICE::TOSS (F)
Uses random number generator to simulate die toss.

RMD_DICE::GET_PROPERTY (F)
Accessor method.

NIST Center for Neutron Research —

DAVE

IDL/DAVE Lunchtime Seminar

RMD_DICE::SET_PROPERTY (F)
Accessor method.

RMD_DICE::CLEANUP (P)
Frees heap variables (data members) of the object.

RMD_DICE_SET_VAL (P)

Required procedure for setting the value of the CW via
wi dget _control,id, set_val ue = new val ue.

RMD_DICE_GET_VAL (F)

Required function for retrieving the value of the CW via
wi dget _control,id, get _value = current_val ue.

RMD_DICE_KILL_NOTIFY (P)
“Cleanup” routine associated with the stash that destroys the object.

Using RMD_DICE in a sample program

There is an example program named DICE_EXAMPLE.PRO appended to the
program RMD_DICE.PRO. This program demonstrates how to incorporate the
cw named RMD_DICE into a widget program. It has four components:

DICE_EXAMPLE (P)
Widget definition module. Note that both the NO_PRESS and
NO_CNTDOWN keywords are set in the function call to RMD_DICE. This is
"by-design” so that the user cannot press the die and make it roll.

DICE_EXAMPLE_EVENT (P)
Event handler for all events from widget. Handles events pertaining to
rolling once, rolling N times, printing the current value of the die, and
quitting.

ROLL_ONCE (P)
Invokes WIDGET_CONTROL statement to roll the die once. There are
two ways to roll the die. One way is to set the value of the die widget
to -1. The other is to invoke the ROLL method directly on the object
widget. Both methods are included in the source code with one
commented out.

DE_CLEANUP (P)
Eliminates the pixmap and clears any heap variables.

In order to run the program, compile RMD_DICE and type DICE_EXAMPLE at the
command line:

NIST Center for Neutron Research —

DAVE

IDL/DAVE Lunchtime Seminar

IDL> .compile RMD_DICE
IDL> DICE_EXAMPLE

You should see a user-interface like that shown in fig. 1.

il Example dice program

Print walue

i

Rall once
M (500

Rall i times
Cuit

k! 4 5 B 7
Die Face

i

Fig. 1 Screen shot from DICE_EXAMPLE.PRO.

NIST Center for Neutron Research

DAVE

IDL/DAVE Lunchtime Seminar

Chuck-a-Luck Simulator

The program XCHUCK_A_LUCK is a conventional widget program that uses the
RMD_DICE compound widget for all of the die needs. We will discuss the rules
of the game first and then briefly discuss the odds of winning and the expected
return on this game of chance.

The game of Chuck-A-Luck is an old favorite and can be found still in traveling
carnivals. The rules are simple and the odds appear to be favorable for the
player. As we will see, the odds are naturally in favor of the house. The game
apparatus consists of three dice and a betting surface has regions containing
the numbers 1 through 6 corresponding to the faces of a die. The bettor places
money in one of the six regions on the betting surface and the the three dice
are rolled simultaneously. For the purposes of illustration let's assume that the
bet is $1. If the number does not appear on any of the three dice then the
stakes are lost. If the number appears once then the bettor wins $1 plus the $1
bet. If the number appears twice then the bettor wins $2 plus the $1 bet. If
the number appears all three times then the bettor wins $3 plus the $1 bet.

The program XCHUCK_A_LUCK.PRO simulates this game of chance in IDL. The
application is shown in fig. 2.

#l Chuck-a-luck x|

Payout: Double=2:1, Triple=10:1

-1

Roll Dice

Reset | Quit |

Purse ($)| 115.00

Bet amount ($)| 4

Dice number {1-8)| 1

Winnings this roll ($)| 8.00

Overall Winnings ($)| 15.00

Fig. 2 Screen shot of XCHUCK_A_LUCK.

NIST Center for Neutron Research —

DAVE

In this application you begin with a purse of $100. You can bet any amount up
to $100. You can also select which die face in the field labeled Dice number.
When you have entered your bet and selected the Dice number then you begin
playing by pressing the button labeled Roll Dice. The faces on the three dice
will change for a few moments and then the result will be displayed. The
fields labeled overall winnings, winnings this roll, and purse will be updated
based on the outcome of this roll.

IDL/DAVE Lunchtime Seminar

It is easy to figure out how likely a bettor is to win any return. In order to
understand this we can consider the probabilities.

Consider rolling one die. This can result in only 2 outcomes. Let X represent
the event in which this single die matches the bettor's choice. Let Y represent
the event in which there is no match between the bettor's choice and the die.
With three dice there are eight (2°) possible events:

XXX, XXY, XYX, XYY, YXX, YXY,YYX,YYY

We know of course that the probability of X occuring is P(X)=1/6. Similarly we
know that P(Y)=5/6. Now we can enumerate the probabilities.

Probability of three matches (XXX):
P(3 matches) = P(XXX) = P(X)«P(X) sP(X) = 1/6% = 1/216

Probability of two matches: (XXY,XYX,YXX)
P(2 matches) = P(XXY)+P(XYX)+P(YXX) = 3¢(1/6%) «(5/6) = 15/216

Probability of one match: (YYX,YXY,XYY)
P(1 match) = P(YYX)+P(YXY)+P(XYY) = 3¢(5/6)? «(1/6) = 75/216

Probability of no matches: (YYY)
P(0 matches) = P(YYY) = (5/6)® = 125/216

With this information we can determine the probability of winning on any
single game.

P(win) = P(3 matches) + P(2 matches) + P(1 match) = 91/216 = 0.42|

Therefore the odds are clearly in favor of the house.

Now we can calculate the expected return on a $1 bet.

Return = $3+(1/216) + $2+(15/216) + $1+(75/216) - $1+(125/216) = -$0.08|.

For every dollar that you bet you can expect to pay the house 8 cents.

10

NIST Center for Neutron Research —
Data

DAVE

IDL/DAVE Lunchtime Seminar

We can test out different payouts to see the effects. For instance, if we
change the payout of a triple from 3:1 to 10:1 we find:

Return = $10+(1/216) + $2+(15/216) + $1+(75/216) - $1+(125/216) = -50.05].

You can continue increasing the odds of a triple match to find out when the
odds are even. The result is a triple payout of 20:1.

11

NIST Center for Neutron Research

DAVE

IDL/DAVE Lunchtime Seminar

Source Code Listing
;. NAME:

RVD_DI CE
PURPCSE:

Denonstrate how to nmake a conpound wi dget using an object
wi dget. This particular exanple uses the functionality of
CWDICE.PRO that conmes in the IDL distribution. It builds
on that functionality with a NO PRESS keyword that allows

t he devel oper to invoke die rolls programmatically. In
addition it uses bitnapped i nages of the 6 faces of a die.

I f the program cannot find the nice bitmaps of the die then
it uses the same ones that are in the CWDI CE routine.

Since this conmpound widget is witten as an object, the
COWON bl ock in CWDICE contained in the IDL distribution
has been el i m nat ed.

AUTHOR:

Robert Di nmeo

Nati onal Institute of Standards and Technol ogy
Center for Neutron Research

100 Bureau Drive, Miil Stop 8562

Gai t her sburg, MD 20899

Tel : (301) 975-8135

Emai | : robert. di mreo@i st. gov

CATECORY:
CGeneral programi ng
CALLI NG SEQUENCE:

DI CE_ | D = RVD DI CE(PARENT, VALUE = 1) : Sets the initial
; value to 1

The return value of the RMD DICE is the widget id of the new
wi dget, just like an ordinary primtive w dget.

| NPUT PARAMETERS (required):
PARENT -- The id of the parent w dget
| NPUT KEYWORDS (optional):

EVENT_FUNC -- Event handler function to be executed when
event generated in the wi dget. See EVENT
STRUCTURE bel ow for a description of the
event structure returned.

EVENT_PRO - - Event handl er procedure to be executed when
event generated in the widget. See EVENT
STRUCTURE bel ow for a description of the
event structure returned.

UNAME - - The user nane of the RVD_DI CE wi dget
UVALUE - - The user value of the RVD DI CE w dget
TUMBLE_CNT -- The widget sinulates the tunbling of a die by

changing the bitmap on the die several tines
before settling down to a final value. The
nunber of "tunbles" is specified by the

12

IDL/DAVE Lunchtime Seminar

NIST Center for Neutron Research

DAVE

TUVBLE_CNT keyword. The default is 10.
TUMBLE_PERI OD - -

The ampbunt of tinme in seconds between each

tunble of the dice. The default is 0.05 seconds.

NO_PRESS - - If set then pressing the die will not result in a
aroll. Aroll can only be invoked programatically
by setting UVALUE = -1

NO CNTDOMN -- Setting this keyword prevents the internediate

steps in a roll from being displayed.
QUTPUT KEYWORDS (optional)

OBJ_REF - - oj ect reference to the conmpound wi dget all ow ng the
devel oper to invoke nethods directly on the w dget
and bypassing the linitations inposed by the
W DGET_CONTRCL procedure.

EVENT STRUCTURE:

event = { RVD_DI CE_EVENT, $ Nane of event structure
| D: OL, $ The 1D of the conpound wi dgets TLB
TOP: OL, $ The id of the TLB of the hierarchy
HANDLER: OL, $ The event handler ID.
VALUE: 0, $ The value of the die (0<int val<7)

OBJECT: SELF} The object reference allow ng the user
to call methods on the object directly.

VETHODS:

These accessor nethods are used when the user invokes either of the
foll owi ng two comuands:

W DGET_CONTROL, DI CE_ID, GET_VALUE = VAL

W DGET_CONTROL, DICE_ID, SET_VALUE = VAL
SET_PROPERTY - - Accessor nethod all owi ng user to change any of the
"DATA" |isted bel ow
GET_PROPERTY - - Accessor method all owi ng user to obtain any of the
"DATA" |isted bel ow
"DATA" - - VALUE, NO CNTDOMAN, NO PRESS, FACES, TLB ID

Note that TLB ID is only available in GET_PROPERTY.
COMON BLOCKS:

NONE
REQUI REMENTS:

SOURCERQOT. PRO

Bitmap files: dl.bnp, d2.bnp, ..., d6.bnp located in the directory
| abel ed | MAGES.
PROCEDURE:

The RVD DI CE wi dget consists of a single pushbutton that displays
its current die value as a bitmap. |If the user presses the button,
it tunbles for a nmonent and then the new val ue is displayed and an
event is issued. The tunbling effect is present only if the
TUMBLE_CNT keyword is set to a nunmber greater than 1 and the

NO CNTDOMWN keywork is not set.

The current value of the die is avail able via the
W DGET_CONTROL, DICE ID, GET_VALUE = VAL command.

13

NIST Center for Neutron Research

DAVE

IDL/DAVE Lunchtime Seminar

The current value of the die can be set by issuing the

W DGET_CONTROL, DICE_ID, SET_VALUE = VAL command. |[|f the
requested value is outside the range [1,6], then the die
tumbles to a new value as if the user had pressed the
button, but no event is issued.

The die can be "rolled" programmtically by one of two nethods.
The first case was presented in the paragraph above via

wi dget _control,dice_id,set_value =0

The second way to roll the die progranmatically is by invoking the
ROLL nethod on the object itself via

ret = o_die->roll ()
EXAMPLE

: An exanpl e inpl enentation of this conmpound w dget is appended
; tothe end of this programlisting and it is called D CE EXAVPLE
; Conpile this programand then type DI CE_ EXAMPLE at the | DL pronpt.

This exanple programallows the user to roll the die once, print
out the resulting value, or roll it nmany tines and see a discrete
probability density function showi ng the frequency of occurrences
of each face. A dashed line is superposed on the probability
density to indicate the value of 1/6, the theoretical val ue.

MODI FI CATI ON HI STORY:

Witten -- 2/3/04 (RMWD)
Fi xed bug that occurred for nultiple rolls -- 2/6/04 (RNVD)
Added NO PRESS keyword to prevent user fromrolling a die. This
facilitates the devel oper allowi ng only programmatic rolls.
Al so added SEED as an object attribute. SEED is used in the
random nunber generator for rolling the die.
-- 2/7/04 (RWVD)
Added OBJ_REF keyword in the widget function call so that the
obj ect reference can be passed out to the user enabling direct
i nvocati on of methods on the w dget object -- 2/23/04 (RVD)

pro rnd_dice:: cl eanup

ptr _free, sel f.storage, sel f.seed
heap_free, self.faces

end

i ce::set_property, val ue = val ue,
no_cntdown = no_cntdown,
No_press = no_press,
tunmbl e_cnt = tunbl e_cnt,
faces = faces

function rmd_

a-
AHHLH

el ements(tunmble_cnt) ne 0 then self.tunble_cnt = tunbl e _cnt
el ement s(val ue) ne 0 then self.value = val ue

el ement s(no_cntdown) ne 0 then self.no_cntdown = no_cntdown
el ement s(no_press) ne 0 then self.no_press = no_press

e

n

return, 1
end
function rmd dice':get property, value = value, ¢

14

NIST Center for Neutron Research

DAVE

no_cntdown = no_cnt down, $
no_press = no_press, $
faces = faces, $
tlb id =tlb id

IDL/DAVE Lunchtime Seminar

val ue = sel f.val ue

no_cnt down = sel f. no_cntdown

no_press = self.no_press

tlb_id = self.tlb

if arg_present(faces) then faces = *self.faces

return, 1
end
.’fhh’ci II Iohl ;_I,,T,d, ai, lclel_lglei t {llall : il al LN A A A A A A A AN A AN A AN A AN AN AN A A N A A A A A A A A A A A A A A AR AN A A A A e

wi dget _info(id,/child)

wi dget _control, stash, get _uval ue = obj ect
ret = object->get_property(val ue = val ue)
return, val ue

end

function rnd_dice::toss

if n_elenents(*self.seed) gt O then $
s = *self.seed

toss = fix(6*randomu(s) +1)

*self.seed = s

return,toss

end

function rnd_dice::rol
if self.no_cntdown then tc = 1 else tc = self.tunbl e_cnt
if self.remaining eq O then begin
self.remaining = tc
sel f.value = sel f->toss()
endi f
if self.remaining eq 1 then begin
val ue = self.val ue
endif else begin ; self.remaining gt 1 or less than O
val ue = sel f->toss()
wi dget _control,self.dice_id,tinmer = self.tunble_period
endel se
wi dget _control,self.dice_id,set value = *(*sel f.faces)[val ue-1]
self.remaining = self.remaining - 1
return,1
end

pro rnd_di ce_set _val,id, val ue
stash = widget _info(id,/child)
wi dget _control, stash, get _uval ue = obj ect
if (value I't 1) or (value gt 6) then begin
ret = object->roll ()
endi f el se begin
ret = object->set_property(val ue = val ue)
ret = object->get property(faces = faces)
wi dget _control, stash, set_val ue = *faces[val ue-1]

endel se

end

function rmd_dice::dice event handier,event TR
this _event = {RVD DI CE EVENT, id:self.tlb,

top: event .t op,
handl er : event . handl er
val ue: sel f. val ue

PFHHH

15

NIST Center for Neutron Research

DAVE

obj ect: sel f }
i n_event = tag_nanmes(event,/structure_nane)
i f strupcase(in_event) eq 'WDGET_BUTTON then begin
if self.no_press eq 1 then return, O
endi f
; Call the event if requested
if self.event_pro ne "" then begin
cal |l _procedure, sel f.event_pro, this_event
this event = 0
endi f
if self.event_func ne "" then begin
ret = call _function(self.event func,this_event)
this event = 0
endi f

IDL/DAVE Lunchtime Seminar

; Roll the die and display the results
ret = self->roll ()

; If this invocation is not fromthe tiner, issue an event

if tag _names(event,/structure_nane) eq 'WDGET_TIMER then return, O
return,this_event

end

function rnd_dice_events, event

wi dget _control, event.id, get _uval ue = obj ect

t he_event = object->di ce_event _handl er (event)
return,the_event

end

pro rnd_dice kill _notify, wd

; This is the internal "cleanup" routine for the conmpound w dget.
It sinply destroys the object.

wi dget _control,w d, get _uval ue = obj ect

obj _destroy, object

end

function rnd_dice::convert_bnp, fil enane

x = read_bnp(fil enane,r, g, b)

Xsi ze = size(x)

dxsize = (dysize = 64)

if xsize[l] eq dxsize and xsize[2] eq dysize then xred = x else $
xred = congri d(x, dxsi ze, dysi ze)

brp = refornm([[r[xred]],[g[xred]],[b[xred]]], dxsize, dysize, 3)

return, bnp

.’fhh’ci il Iohl }h,’d’_’di’ ICIe; ; il hil i’_’di’ ,e,_.,f lalclelsl I A A A A R A A A A A R R D R e e A A I I A A e A
; Load in the die face bitmaps and store themin a pointer to a
poi nter array (length 6)

path = sourceroot()+'images' +pat h_sep()
bnmp_arr = ptrarr(6,/allocate_heap)
if file_test(path+ dl'+ .bnmp") then begin
for i = 1,6 do begin
dice file = path+ d' +strtrim(string(i),2)+".bnmp'
d_bnp = sel f->convert_bnp(dice_file)
*brp_arr[i-1] = d_bnp
endf or
endi f el se begin
faces = lonarr(192)
i 4=i ndgen(4) +1
s5=[0, 5]

pos=[13, 77, 141, 36, 54, 67, 87, 100, 118, 131, 151, 164, 182]
v1=['c00300" x, ' c00300' x, ' c00300' x, ' 0010000 x, ' 8007" X, $

16

NIST Center for Neutron Research

DAVE

' £0000000' x, ' f'x, 'e0018007' x,'e0018007' x, ' f 000000f"' x, $
' £ 000000f "' x, ' f0c0030f " x, "' f 0c0030f ' X]
v2=["'e00700' x, ' e00700' x, ' e00700' x, ' f 0030000' x, ' cOOf "' x, $
' £8010000' x, ' 801f' x, 'f003c00f' x,"' f003c00f"' x, ' f801801f" x, $
'£801801f"' x, "' f8e1871f"' x,"' f8e1871f" Xx]
for i =0, n_elenents(pos)-1 do begin
faces[s5+pos[i]] = vi[i]
faces[i4+pos[i]] = v2[i]

IDL/DAVE Lunchtime Seminar

endf or
faces = byte(faces,O0,4, 32, 6)
BYTECORDER, faces, /HTONL ; Little endian nachi nes need swap
for j = 1,6 do *bnmp_arr[j-1] = faces[*,*,]-1]
endel se
ret = self->set_property(faces = bnp_arr)
return,1
end
function rnd_dice::init, par ent,

EVENT_FUNC = event _func
EVENT_PRO = event _pro,

_Extra = extra,

UNAMVE = unane,

UWALUE = uval ue,

VALUE = val ue,

TUVBLE_CNT = tunbl e_cnt,
TUMBLE_PERI OD = tunbl e_peri od,
NO _PRESS = no_press,

NO _CNTDOMN = no_cnt down

PR PAAL

; Check for keywords that have been passed in

if n_paranms() eq O then return,O

if keyword_set(no_cntdown) then no_cntdown = 1B else $
no_cntdown = OB

i f keyword_set (no_press) then no_press = 1B el se no_press = 0B

if not (keyword_set(tunble_cnt)) then tunmble_cnt = 10

if tunble cnt It 1 then tunble cnt = 10

self.tunmble_cnt = tunble_cnt

if not (keyword_set(tunble_period)) then tunble_period = 0.05

if tunble period It O then tunble period = 0.05

sel f.tunbl e _period = tunbl e_period

if n_elenments(unanme) eq O then unane ="

sel f. uname = unane

if n_elements(storage) eq O then storage ="'

sel f.no_cntdown = no_cnt down

; Initialize the die faces

self.faces = ptr_new(/all ocate_heap)

ret = self->init_die faces()

; Store the UVALUE if the user passed one in

sel f.storage = ptr_new(uval ue)

; Use RANDOMU to pick the initial value of the die, unless the
user provi ded one.

sel f.seed = ptr_new(/al |l ocat e_heap)

if n_elenents(value) eq O then value = self->toss()

sel f.val ue = val ue

if n_elements(event _pro) eq O then event _pro = ""

if n_elenents(event_func) eq O then event_func =

; Create the widgets

self.tlb = wi dget base(parent, UVALUE = storage, $
FUNC _GET_VALUE = 'RVD DI CE_GET_VAL', $
PRO SET_VALUE = 'RMD DI CE_SET _VAL', $

17

NIST Center for Neutron Research

DAVE

IDL/DAVE Lunchtime Seminar

UNAME = unanme, _Extra = extra)
bmp = *(*sel f.faces)[val ue-1]
die = widget button(self.tlb,value = bnp, $

UNAME = unane+' _BUTTON ,kill _notify = 'RVD DICE KILL_NOTIFY', $
EVENT_FUNC = ' RVMD_DI CE_EVENTS', WVALUE = sel f,/ bit map)
self.dice_id = die
sel f.event _func = event func
sel f.event _pro = event _pro
sel f.no_press = no_press
return,1

_dice__define

= { rnd_dice,
tlb:OL,
dice_id:OL,
no_press: 0B
no_cnt down: 0B
remai ni ng: 0,
event _pro:'"',
event func:'",
tunbl e _cnt: O,
tunbl e_peri od: 0. 0,
val ue: 0,
uname: "',
storage: ptr_new(),
seed: ptr_new(),
faces: ptr_new()

B

PBARLRPRPAPARARLARARR

function rnd_dice, parent, Extra = extra, OBJ_REF = obj ref

; Provide an interface identical to that of CWDI CE PRO and
; return the widget id.

obj ref = obj _new('rnd_dice',parent, Extra = extra)

ret = obj _ref->get _property(tlib_id =tlb_id)

return,tlb_id

end

EE Ik b O S O O kR I O S S S R
)
. *************************Exanpl e usage********************************

pro roll _once, event

; There are two ways to roll the die once. The first one is
; commented out. The second one is consistent with the way
; in which this is done using CWDICE

;Wi dget _control, event.top, get_uval ue = pstate
;ret = (*pstate).o _die->roll ()

idl = widget_info(event.top,find by unane = 'DIE 1')
wi dget _control,idl,set _value = -1
end

pro di ce_exanpl e_event, event

wi dget _control, event.top, get_uvalue = pstate

uname = widget _info(event.id,/unane)

case uname of

"QUT : wdget _control, event.top,/destroy

"PRINT_VALUE : $

begi n

id = widget_info(event.top,find_by uname = 'DIE_1")
wi dget _control,id,get_value = this_vall
print,this_vall

18

IDL/DAVE Lunchtime Seminar

NIST Center for Neutron Research

DAVE

end
"ROLL_ONCE' : $
begi n
ret = (*pstate).o_die->set_property(no_cntdown = 0)
roll _once, event
ret = (*pstate).o_die->set_property(no_cntdown = 1)
end
"ROLL': $
beg|n
ret = (*pstate).o_die->set_property(/no_ cntdomn)
id = mndget _info(event.top, find_by uname = NUM ROLLS')
wi dget _control,id,get_value = val & n = long(val[0])
hi st = fltarr(n)
for i = 0,n-1 do begin
rol |l _once, event
id = wi dget _info(event.top,find by uname = 'DIE_1')
wi dget _control,id,get_value = this_vall
hist[i] = float(this_vall)
endf or
yhist = histogran(hist,mn = 1.0, max = 6.0, nbins = 6)
b = 1.0+findgen(6)
y = yhist/ (1. 0*n)
dy = sqrt(yhist)/(1.0*n)
yth = 1./6.
wset, (*pstate).w npix
plot,b,y, psym= 4,yrange = [0.0,0.5],/ysty, $
xrange = [0.0,7.0],/xsty, xtitle = 'Die Face',ytitle = "'Prob'
errplot,b,y-dy,y+dy,width = 0.0
plots,!x.crange,[yth,yth],/data,linestyle = 2,thick = 2.0

xyouts, 0.25,0.2,/data,"'1/6

wset, (*pstate).w nvis

device,copy = [0,0,!d.x_size,!d.y_size, 0,0, (*pstate).w npix]

ret
end
el se:
endcase
end

= (*pstate).o_die->set

_property(no_cntdown = 0)

pro de_cl eanup,tlb

wi dget _control,tl b, get_uvalue = p
wdel et e, (*pstate). w npi x
heap_free, pstate

end

state

pro dice_exanple

tIb = wi dget _base(/tlb_frame_attr,/row,title = 'Exanple dice program)
col _base = widget _base(tlb,/col)
row base = w dget base(col base,/row,/align_center)
tc = 20
tp = 0.01
void = rnd_di ce(row base,uname = 'DIE 1',tunble _count = tc, $
tunmbl e_period = tp, no_press=1, no_cntdown=1, obj _ref = o_die)
void = widget _button(col base,value = 'Print value', unane =
" PRI NT_VALUE')
voi d = wi dget_button(col base,value = 'Roll once',unane = ' ROLL_ONCE')
void = ¢ _fleld(col _base, xsi ze = 5,value = '500',title ="'N, $
uname = ' NUM ROLLS')
void = wi dget_button(col base,value = 'Roll N tinmes',uname = ' ROLL')
void = widget_button(col base,value = "Quit',unanme = "QUIT")
col base_geom = wi dget _i nf o(col _base, / geom
xsize = 300 & ysize = col base_geom ysi ze

19

NIST Center for Neutron Research

DAVE

win = widget _draw(tl b, xsize = xsi ze,ysize = ysize,unanme = "WN)

IDL/DAVE Lunchtime Seminar

wi dget _control ,tlb,/realize

wi dget _control ,wi n,get_value = winvis
wi ndow, / f r ee, / pi xmap, xsi ze = xsi ze, ysize = ysi ze
wi npi x = !d.w ndow

state = {ones: OL, Wi nvi s:w nvi s, w npi x: Wi npi X, o_di e: o_di e}
pstate = ptr_new(state,/no_copy)

wi dget _control,tl b, set_uvalue = pstate

xmanager, ' di ce_exanpl €', tl b,/ no_bl ock, cl eanup = ' de_cl eanup’
end

20

NIST Center for Neutron Research

DAVE

IDL/DAVE Lunchtime Seminar

NAVE:
XCHUCK_A_LUCK

PURPCSE
Simul ate a sinple gane of chuck-a-1uck

CALLI NG SEQUENCE:
XCHUCK_A_LUCK

| NPUT PARAMETERS
NONE

KEYWORD PARANMETERS
NONE

; REQUI REMENTS:

; CENTERTLB. PRO

; RVMD DI CE. PRO -- a conmpound wi dget that supplants the
; program CWDI CE. PRO This conpound w dget does not

; use any COVMON bl ocks.

COVMON BLCOCKS:
NONE

AUTHOR:
Rob Di meo
February 3, 2004

MODI FI CATI ON HI STORY:
Changed fonts to larger, easier-to-read fonts
-- RND (2/7/04)

pro xcac_cl eanup,tlb

wi dget _control,tl b, get_uvalue = pstate
heap _free, pstate

end

pro xcac_get _val ues, event
wi dget _control, event.top, get_value = pstate
nmmsz(*theynmms
for i = 0,n_elenments(nanes)-1 do begin

dice id = wi dget _i nfo(event.top, find_by_unane = nanes[i])

wi dget _control,dice_id, get_value = dice_val ue

if i eqO then dice = d|ce_value el se dice = [dice,dice_val ue]
endf or

function xcac_reset, event

wi dget _control, event.top, get_uvalue = pstate
(*pstate).purse = 100

(*pstate).mﬂnnings =0

format = '(f8.2)'

purse_id = w dget _info(event.top,find by unane = ' PURSE')

mﬂdget_control purse_id,set_value = string((*pstate).purse, $
f or mat fornat)

win_id = mndget |nf o(event.top, find_by_unane = "WNN NGS)

mﬂdget_control win_id,set_value = string((*pstate).w nnings, $
f or mat fornat)

win_id = mndget |nf o(event.top, find_by_unane = 'ROLL_W NNI NGS')

mﬂdget_control win_id,set_value = string((*pstate).w nnings, $

f or mat format)

21

NIST Center for Neutron Research

DAVE

IDL/DAVE Lunchtime Seminar

return, 1
end

pro xcac_roll, event
wi dget _control, event.top, get_uvalue = pstate
nmms=(*mtﬂeynmms
for i = 0,n_elements(nanes)-1 do begin
dice id = wi dget _info(event.top, find_by uname = nanes[i])
wi dget _control,dice_id, set_value = -1
wi dget _control,dice_id, get_val ue = dice_val ue
if i eq O then dice = dice_value else dice = [dice,dice_val ue]
endf or
bet id = widget_info(event.top,find by unane = 'BET ~ AMOUNT")
wi dget _control, bet _id, get_value = bet & bet ant = fix(bet[0])
di ce_nunber _id = mndget _info(event.top, $
find_by uname = ' DI CE_NUMBER)
wi dget _ control di ce_nunber _i d, get _val ue = val
guess f|x(val[0])
m i nd = where(di ce eq guess, count)
case count of

0: begin
Wi nni ngs = -bet_ant
(*pstate).purse = (*pstate). purse-bet _ant
end
1: begin

Wi nni ngs = bet _ant
(*pstate).purse = (*pstate). purse+w nni ngs
end
2: begin
W nnings = (*pstate).dbl *bet _ant
(*pstate).purse = (*pstate). purse+w nni ngs
end
3: begin
Wi nnings = (*pstate).trpl *bet_ant
(*pstate).purse = (*pstate). purse+w nni ngs

end
endcase
(*pstate).mﬂnnings = (*pstate).w nni ngs+w nni ngs
format = '(.2)!
purse_id = mndget_lnfo(event.top,find_by_unane = ' PURSE')
mﬂdget_control purse_id, set_value = string((*pstate). purse, $

format = fornat)
win_id = wi dget _ |nf
mﬂdget_control W n
f or mat f or mat

o(event.top, find_by unane = ' W NN NGS')
id, set_value = string((*pstate).w nnings, $

\/l

win_id = mndget i nfo(event.top, find_by uname = ' ROLL_W NNI NGS')
wi dget _control,w n_id, set_value = string(w nnings,format = format)
i f (*pstate).purse le 0.0 then begin
strout = 'Your purse is enpty! Wuld you like to restart?
ok = di al og_nessage(di al og_parent = event.top, strout,/question)
i f strupcase(ok) eq 'YES' then begin
ret = xcac_reset(event)
endi f el se begin
wi dget _control, event.top,/destroy
endel se
endi f
end

pro xcac_event, event

unanme = widget info(event.id,/unane)

case uname of

"QUT : wdget_control, event.top,/destroy
"ROLL': xcac_roll,event

22

NIST Center for Neutron Research

DAVE

IDL/DAVE Lunchtime Seminar

"RESET' : ret = xcac_reset(event)
el se:

endcase

end

pro xchuck_a_ | uck
tIb = widget base(/tlb frame_ attr,title = ' Chuck-a-luck',/col)
dbl =2 &trpl =10
this font = 'Helvetica*Bol d'
strout = 'Payout: Double="+strtrim(string(dbl),2)+ $
11, Triple=" + strtrin(string(trpl),2)+:1
void = mﬁdget_label(tlb,value = strout,font = this _font)
romease = wi dget _base(tlb,/row, /align_center)
names = ['DICE_ 1','DICE 2',' DI CE_3']
for i-Or1demMsUmma 1 do $
void = rnd_di ce(row base, unane = nanes[i],tunble cnt = 10, $
align_center,/no_press)
voi d = w dget button(tlb value = 'Roll Dice', $
font = this_font,uname = 'ROLL")
next _row = w dget _base(tlb,/row,/align_center)

\Q_I

voi d = widget _button(next_row value = 'Reset', $
font = this_font,uname = ' RESET")
void = mjdget_button(next_romnvalue = 'Qit", $

font = this_font,uname = "QUIT)
col base = wi dget base(tlb /col,/base_align_right)
void = cw field(col _base,title = 'Purse ($)',value = 100, $

unane = ' PURSE' , /noedlt font = this_font,fieldfont = this_font)
void = cmLfieId(col_base title = 'Bet amount (%) value = 1, $
unanme = ' BET_AMOUNT' ,font = this_font,fieldfont = thls_font)
void = cw field(col _base,title = 'Dice nunber (1-6)',value =1, $
uname = 'DICE_NUMBER ,font = this_font,fieldfont = this_font)
void = CM/er|d(CO| base title = 'VVnnlngs this roll ($)',value =0, $
uname = ' ROLL MYNNINGS /noedit,font = this_font, $
fieldfont = this font)
void = cw field(col _base,title = erall Wnnings ($)',value =0, $
unane = ' W NNI NGS', /noedlt font = this_font,fieldfont = this_font)
centertlb,tlb
wi dget _control ,tlb,/realize
state = { pur se: 100. 0, $
wi nni ngs: 0. 0, $
names: nanes, $
dbl : dbl , $
trpl:trpl }
pstate = ptr_new(state,/no_copy)
wi dget _control,tl b, set_uvalue = pstate
reg_name = 'xcac'
xmanager, reg_nane, tl b,/ no_bl ock, event _handl er = 'xcac_event', $
cl eanup = ' xcac_cl eanup'
end

23

	Widget Values of Compound Widgets
	Limitations of Conventional Compound Widgets
	Requirements and common practices for conventional compound widgets
	The interface for a compound widget object
	RMD_DICE: A compound object widget replacement for CW_DICE
	Using RMD_DICE in a sample program
	Chuck-a-Luck Simulator
	Source Code Listing

